CMPT 354: Database Systems 1 – Unit 01 - Introduction

Dr. Jack Thomas Simon Fraser University Summer 2021

Welcome to Database Systems 1!

- Simon Fraser University's introduction to databases for third years.
- Not a core requirement, but always a perennial candidate.
- Also a prerequisite to CMPT 454, Database Systems 2, if you want more!

Our Goals for Today

- Handle the up-front **course administration** business.
 - Work together to **schedule office hours**.
- Introduce what we mean by a **database**.
- Give a broad overview of the concepts to be covered
- Time allowing, jump into our first proper unit (no spoilers here!)

Your Teaching Team

 I am Dr. Jack Thomas (jackt@sfu.ca), Sessional Instructor.

- Your TAs include:
 - Emma Hughson (<u>emma hughson@sfu.ca</u>)
 - Amirhossein Mozafari Khameneh
 (amirhossein mozafari khameneh@sfu.ca)
 - Peshotan Irani (peshotan irani@sfu.ca)

Course Website(s)

- Canvas
 - The main course website, hosting these virtual lectures, quizzes, assignments, midterms, etc.
- CourSys
 - Where assignments will be uploaded and all final grades will be tracked and released.
- Discord
 - The service we'll use for office hours, voice chats, and other forms of chatting.

Assessment

• 10 Weekly Quizzes: 20% (2% each)

- Uploaded weekly on Fridays.

- 5 Assignments: 40% (8% each)
 - Two weeks apart, posted to Canvas, uploaded to CourSys.
- 2 Midterms: 20% (10% each)
 - Hosted on Canvas, the first in mid-June, the second in mid-July, both during class time.
- Final Exam: 20%
 - Also hosted on Canvas, schedule TBD but during the exam period in August.

Weekly Schedule

Lectures

- Monday from 8:30am to 9:30am.
- Thursdays from 8:30am to 10:30am.

• Quiz

- Goes up on Friday on Canvas.
- You'll always have 48 hours to complete it to account for timezone and schdule issues.

Office Hours

- Offered through Discord, whose invite link can be found on the Canvas home page.
- Let's talk about scheduling those now!


Special Thanks

- I'd like to extend a special thank-you to Dr. John Edgar here at SFU for sharing his previous course material during the development of this course.
- Did I include a picture of Dr. Edgar and not myself? Yes.

Data and Databases

• The least popular Jane Austen book.

• Also: the subject of this course

Image credit: <u>https://janeaustenlf.org/pride-and-possibilities-more-articles/</u> 2019/01/26/issue-50-the-jane-austen-200th-commemoration-book-club

So What is a Database, Anyway?

- A database is a collection of information.
 - Databases of one sort or another have existed since the dawn of civilization.

Image credit: <u>https://outschool.com/classes/ancient-archives-book-club-llzV5ENp</u> <u>https://thedissolve.com/features/movie-of-the-w</u> eek/68-brazil-forum-style-gallows-humor-the-past-as-futur/

The Modern Database

 In Computer Science, a database is a data collection managed by a *Database Management System*, or **DBMS**.

- There are many different DBMS's out there.

 These databases are often represented by the relational model, though many recent NoSQL DBMS's don't use it.

– What's NoSQL? Or SQL? We'll get there.

A Brief History of Time (Just The Database Parts)

 <u>https://www.computerhistory.org/revolution/</u> <u>memory-storage/8/265/2207</u>

Database Applications

- Almost any application that handles a large amount of data will need a database.
- Databases can be found in:
 - The financial industry
 - Government agencies
 - Airlines
 - Universities (hello!)
 - Utility companies
 - Retailers
 - Manufacturing
 - Social Media
 - Games
 - And so much more!

Data, Data, Everywhere

- Early computer databases were primarily used by large organizations to store textual data.
 - In **1975** there were some **301** databases containing about 52 million records.
 - By **1998**, there were **11,339** databases holding 12.05 billion records.
- Databases are now used to store all kinds of different information images, sounds, etc.

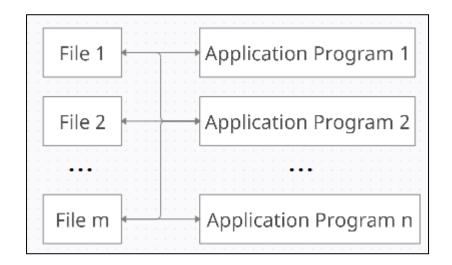
Citation: Martha E. Williams (1998), "State of Databases Today: 1999," in Gale Directory of Databases , L. Kumar,

Data in the Current Millennium

- How much data in the world?
 - **2010**: 1.2 zettabytes
 - 2012: 2.8 zettabytes
 - **2020**: 40 zettabytes
- Growth of data is very recent
 - In 2017, IBM estimated that 90% of data had been created in the last 2 years.
 - Much of this data is **unstructured** and **unanalyzed**.

What's a Zettabyte?

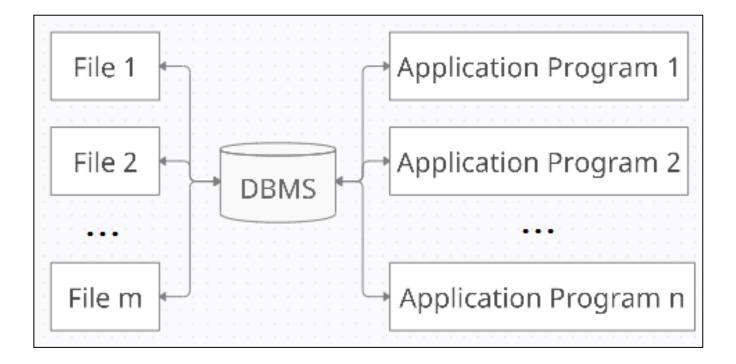
• A zettabyte is:


- Often misspelled zetabyte
- 2⁷⁰ bytes, or 1,180,591,620,717,411,303,424 bytes

• That's a big number

- There are estimated to be in the order of 100 billion stars in the Milky Way Galaxy.
 - 100,000,000,000 = 0.000000000847 zettabytes
- Estimates of the number of stars in the observable universe vary wildly, but here's one:
 - 10,000,000,000,000,000,000,000 = 847 zettabytes

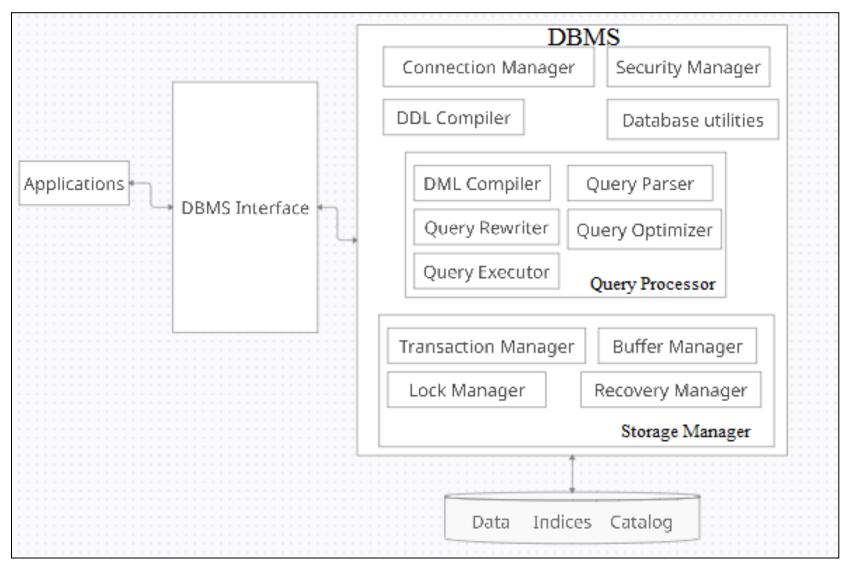
How Data Storage Works Without a Database Management System


- Data is collected in different **files**.
- These files are used by many application programs, often shared between them.

What Happens If...

- An **attribute** is added to one of these files?
- Information that is in more than one file is changed by a program that interacts with only one file?
- We need to **repeatedly access a single record** out of millions of records?
- We need to retrieve data **stored in multiple files**?
- Several programs need to access and modify the same records at the same time?
- The system crashes while one of the application programs is running?

Data Storage With a Database Management System


DBMS Functions

- All access to data is centralized and managed by the DBMS.
- Design and implementation advantages
 - Logical data independence
 - Physical data independence
 - Reduced application development time

• Use advantages.

- Efficient access.
- Data integrity and security
- Concurrent access and concurrency control
- Crash recovery

DBMS Components

Which DBMS To Use?

- There are different types of **DBMS products**:
 - Relational DBMS (or RDBMS)
 - Non-SQL (What's SQL? We're getting there...)
- Cost also varies:
 - Some are free, like MySQL or Microsoft SQL.
 - Some are **quite expensive**, like Oracle.
- It is important to select the product that is right for the organization or application at hand.

Data Models

- A database **models** a real-world enterprise.
- A *data model* is a **formal language** for describing data.
 - A schema is a description of a particular collection of data using a particular data model.
- One of the most **widely used data models** is the *relational data model*.
 - The main concept of this model is a *relation*, or set, which can be represented by a **table with rows and** columns.
 - Web databases and Big Data databases often do not use the relational model.

Relational Model

- This course covers the relational data model used by most traditional commercial DBMS's.
- The model can be used during the design process to **describe the enterprise** that requires a DB.
 - An example of **abstraction**, since it doesn't require the implementation details yet.
 - Data can be described at different levels, allowing the levels of a system to be **relatively independent from each other**.

Levels of Abstraction

- Data can be described at three levels of abstraction:
 - 1. Physical Schema
 - The lowest level schema, which describes how data is stored and indexed.
 - 2. Conceptual (or Logical) Schema
 - What (not how) data is stored, described in terms of the data model.
 - 3. External (or View) Schema
 - The highest level schema, describing how some users interact with the data. There can be multiple views.

Data Independence

- Physical data independence
 - Allows the physical schema to be modified without rewriting application programs.
 - Usually to improve performance, like adding or removing an index or moving a file to a new disk.

• Logical data independence

- Shields users from changes in the logical schema i.e. their views remain unchanged.
- Allows the logical schema to be modified without rewriting application programs, like adding an attribute to a relation.

Database Languages

• A database language allows a database to be created, modified, or queried.

- We will use *Structured Query Language* (SQL)

- SQL has four components:
 - Data Definition Language (DDL), used to create and modify database schemas.
 - Data Manipulation Language (DML), used to modify and query records.
 - Transaction Control Language (TCL) and Data Control Language (DCL), which we won't be covering.

Data Definition Language

- The DDL allows entire databases to be created, and allows **integrity constraints** to be specified:
 - Domain constraints
 - Referential integrity
 - Assertions
 - Authorization
- The DDL is also used to **modify** existing DB schema:
 - Addition of new tables
 - Deletion of tables
 - Addition of attributes

Data Manipulation Language

- The DML allows users to **access** or **change** data in a database.
 - Retrieve information stored in the database.
 - Insert new information into database.
 - Delete information from the database.
 - Modify information stored in the database.
- There are two basic types of DML:
 - Procedural users specify what data is required and how it should be retrieved.
 - Declarative (nonprocedural) users specify what data is required without specifying how it should be retrieved.

CMPT 354 and 454

- CMPT 354 covers database specification and implementation.
 - Database design the relational model and the ER model.
 - Creating and accessing a database
 - Relational algebra
 - Creating and querying a DB using SQL
 - Database application development
- CMPT 454 DBMS Issues
 - Disk and buffer management and storage
 - Query evaluation
 - Transactions and recovery
 - Advanced topics

CMPT 354 Topics

- Designing a database using the Entity Relationship model, and Entity Relationship diagrams.
- The **relational model**, converting an **ERD** into an **SQL database**.
- Relational algebra, the basis of SQL.
- SQL
- Specifying constraints on a database
- Database applications
- Normalization
- And more!

Recap – The Basics of Data

- In Computer Science, databases are collections of data organized with a Database Management System.
- Databases are based on a **data model**, which for us will usually mean the **relational model**.
- This allows us to describe data at three levels of abstraction (physical, conceptual, and external schema).
- Database languages like SQL are used to create, modify, and query these databases.